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Uniqueness and Exponential Decay of Correlations for 
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We consider a two-dimensional lattice spin system which naturally arises in 
dynamical systems called coupled map lattice. The configuration space of the 
spin system is a direct product of mixing subshifts of finite type. The potential 
is defined on the set of all squares in Z 2 and decays exponentially with the linear 
size of the square. Via the polymer expansion technique we prove that for 
sufficiently high temperatures the limit Gibbs distribution is unique and has an 
exponential decay of correlations. 

KEY WORDS: Lattice spin system; shift of finite type; uniqueness of Gibbs 
state; polymer expansion. 

1. I N T R O D U C T I O N  

The problem considered in this paper arises in the study of ergodic proper- 
ties of spatially extended dynamical  systems called coupled map lattices. 
These models were introduced in the physical literature by Kaneko t11~ as 
simple examples that demonstrate  spatiotemporal  chaos. 

Let s / / b e  a smooth manifold, f be a map of ./4 into itself, and L = Z d 

be the integer lattice of dimension d. A popular  example of coupled map 
lattices can be described as follows. The phase space is the direct product  
of ,/4 over lattice L: Qz.  J / a n d  the dynamics q~ is a composi t ion of two 
maps: q~ = Q L f "  G, where G is a map on the phase space Q L s/r close to 
the identity map. The map G is usually called the interaction. 
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798 Jiang and Mazel 

This model was first studied rigorously by Bunimovich and Sinai (2) in 
the case when ,,# is a circle, f is an expanding map, and d = 1. They con- 
structed a natural measure on the phase space that is invariant and mixing 
under q~ and the spatial translation of the lattice. The idea was to construct 
Markov partitions for (@L .W, ~)  and then to represent the dynamics of 
the couled map lattice by the two-dimensional lattice spin system of 
statistical mechanics. This technique was later extended by Pesin and 
Sinai ~)5) to the situation when f possesses a hyperbolic attractor (see also 
ref. 9). The symbolic representation in this case becomes @ z  Z'M, where 
ZM is a subshift of finite type determined by a transfer matrix M and the 
following diagram is commuting: 

@ ,/~//t (r TI @ .4/~ 

Z Z 

|  ~ ' |  
Z Z 

where T is the spatial translation, r is the Z2-action on @ z ZM induced by 
two natural shifts on the lattice Z-', and n is a semiconjugacy defined by a 
Markov partition. Thus, the existence, uniqueness, and ergodic properties 
of invariant measures on @ z .W become problems about Gibbs states for 
appropriate potentials on @ z XM. 

At first sight, Dobrushin's condition of weak dependence and the 
corresponding theorems (4'6"8' ~7) seem to be the most natural tools for the 
investigation of our model. Unfortunately, Dobrushin's condition requires 
the total smallness of the potential and is inappropriate for the case when 
the configuration space is a direct product of the subshifts of finite type. In 
the latest case the restriction that some pairs of spins cannot be assigned 
to the neighboring lattice sites corresponds to the infinite potential. 
Moreover, it is possible to construct examples showing that the Gibbs state 
is not unique even for infinitely high temperature if the dimension of L is 
bigger than 1. (3) Some conditions of the uniqueness for the infinite poten- 
tials can be found in ref. 7, but they cannot be applied to our situation. 

In this paper we study the case of the one-dimensional L which 
corresponds to the two-dimensional spin lattice system with the configura- 
tion space @zZM"  The H61der continuous potential functions on the 
initial coupled map lattice naturally lead to the potential of the spin lattice 
system which is defined on the set of all squares in Z-" and decays exponen- 
tially with the linear size of the square. (l~ Such two-dimensional spin 
lattice models are the main subject of our study. For them we construct a 
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version of the high-temperature expansion and prove that for sufficiently 
large temperatures the Gibbs state of the system is unique and has an 
exponential decay of correlations. 

The paper is organized as follows. Section 2 contains all settings and 
the formulation of the results. In Section 3 we reduce the initial model to 
a more convenient equivalent model. In Section 4 we construct a polymer 
expansion for the logarithm of the partition function and Section 5 com- 
pletes the proof. In Section 6 we briefly discuss possible generalizations of 
the result. To make the paper self-contained we collected needed results on 
polymer expansion in the appendix. 

2. N O T A T I O N S  A N D  RESULTS 

Let S = { 1 , 2  ..... p} be a finite set with p elements and M be a p x p  
matrix with entries rn u equal to either 0 or 1. We assume that there exists 
a positive integer no such that all entries of M ''~ are positive. For any 
volume V~ Z z a co~guration in V is an element a(V) of S v with the value 
a.,.(V) at point x = ( i , j ) e V  and m,%,~,.=l for any pair x ] = ( i , j ) ,  
xz = (i, j +  1)e V. For the family of configurations a(V;) in mutually dis- 
joint volumes Vi we denote by Z;  a( V i) the corresponding configuration in 
I); V~ provided such a configuration exists. When V = Z  2, we have the 
configuration space Z z = (~) z s where Z'M is the subshift generated by 
the matrix M. 

Denote by Q a square from Z z of size I (Q)•  and consider a 
poential U(a(Q)) defined on the set of all squares in Z-' and satisfying the 
condition 

I u(a(Q))l  ~<exp[ - / ( Q ) ]  (1) 

Take a finite volume V with a boundary condition a '(P),  IY= Z2\ V. 
For any configuration a(V) such that a(V) + a'(19") is a configuration in Z 2 
a conditional Hamiltonian is 

H(a(V) l d~)) 

= - ~ u(~(a))- ~ U(a(On v)+a'(Qn ~)) 
Q~_ v Q~ v ~ o ,  Q~ P:~O 

(2) 

A finite-volume Gibbs distribution is defined by 

exp[ -fill(a(V) ] a'( P))] 
~,~,(g(V))- 3(Vl g'(~)) (3) 
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where the inverse temperature fl 1> 0 and 

S( V] a'(I7")) = ~ exp[ - f i l l ( a ( V )  I or'( I?))] (4) 
a(V) 

is a partition function in the volume V with the boundary condition or'(1~'). 
Consider an arbitrary limit Gibbs measure (Gibbs state) correspond- 

ing to the Hamiltonian (2). Clearly it can be obtained as the limit of the 
finite-volume Gibbs distributions /t v.,, o;,, for an appropriate sequence of 
boundary conditions a',(19".,) and V.,--* Z'- in the van Hove sense. Hence 
the Gibbs state is unique if for any sequence of boundary conditions 
a',(17,,,) the limit p = lim . . . .  It z,,,.o'., exists and does not depend on the 
sequence. We say that p has an exponential decay of correlations if for any 
finite B ~ , B , _ c Z  ?" and any configurations a(B~), or(B._) there exist an 
absolute constant r and positive constant K = K ( B , ,  B2) such that 

I/t(a(Bl) + a(B2)) -- It( a( Bl ) ) /.t( a( B2) )l ~< Kexp[  - - r  dist(B], Bz)] 

Main  Resu l t .  For fl sufficiently small, model (1)-(4) possesses a 
unique Gibbs state and this state has an exponential decay of correlations. 

Remark 1. Our main result can be easily generalized to the case 
when instead of a subshift of finite type one has an arbitrary one-dimen- 
sional model with the spin taking a finite number of values from the set S 
and exponentially decaying potential. The sketch of the corresponding 
proof is given in Section 6. 

R e m a r k  2. During the proof we essentially used the fact that our 
potential is real and it can be transformd into an equivalent nonnegative 
potential. It should be mentioned also that our method is two-dimensional, 
as we refer to the fact that lengths of boundaries of two-dimensional 
volumes are proportional to their diameters. The case of arbitrary dimen- 
sion is treated by another method in a recent paper. ~1 

3. EQUIVALENT MODELS 

We show that the model (1)-(4) can be equivalently described by 
means of more convenient potentials. 

Lemma 1. For the potential 

U'(a(Q))  = U(a(Q))  + max I U(o(Q))l  (5) 
o( Q) 

the corresponding Gibbs measure It'r<r coincides with p v,,.,. 



2D Spin Lattice Systems 801 

Proof. As Ue=max, , (e  ~ IU(tr(Q))l ~<e -/(QI, one has 

Q,"~Vv~O x e V  Q ~ x  I=1 

where I VI denotes the number of lattice points in V. Hence 

(6) 

//v,#,( a( v) ) 

Q ~ v ~  Q ~ v # O  

) Q c ~ V ~ O  Q ~ v ~ o  

Q : , v ~ O  

[ ]}-' x exp fl y '  U ( e ( Q a  V ) + a ' ( Q n  P)) 
I Q m V ~  

"~ 

=It  ]<.,(a(V)) (7) 

which proves 1emma. l 

In view of Lemma 1 we suppose without loss of generality that 

U(a(Q)) >10 (8) 

Let us define a beginning b(Q) of a square Q as the leftmost lower 
corner of Q. Take an integer L ~> 17o and consider a rectangle P of size 
n(P) x Ln(P) such that its leftmost lower corner b(P)= (hi(P), b2(P)) has 
b2(P) = rL, where r and n(P) are integers. We say that the square Q with 
b(Q) =(bl(Q),  b2(Q)) is associated with the rectangle P if b,(Q)=b](P), 
L[b~_(Q)/L] =b_~(P), I(Q)=n(e), and hence Q ~ P  (here [ - ]  denotes the 
integer part). For any rectangle P we define 

U(~r(P)) = ~" U(a(Q)) (9) 
Q 

where the sum is taken over all squares Q associated with the rectangle P. 
Clearly 

0<~ U(a(P))<~Lexp[-n(P)] (10) 
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and absorbing L in fl, one can assume that the potential is defined on the 
rectangles P (instead of squares Q) and satisfies 

0 <~ U(a(P)) <<. exp[ - -n(P)]  ( l l )  

Set 

OIV={xEVldist(x, l~)= 1}, OEV={x~l?ldist(x, V ) = l }  

We call OXV and oEv the internal and external boundaries of V, respec- 
tively. Observe that every finite volume V can be uniquely partitioned into 
vertical segments V,,, each segment being a connected component of the 
intersection of V and some vertical line. The points of oEv adjacent to V,, 
from above and from below we denote by a(V,,) and b(V,,), respectively. 
The collection of such elements will be denoted by a(V) and b(V). In addi- 
tion we restrict our considerations to the volumes with 

L[a(V,,)/L]=a(V,,) and L[b(V,,)+ I /L]-I=b(V, , )  

As we still allow arbitrary boundary conditions, it is enough to prove the 
uniqueness of the limit Gibbs state when the limit is taken only over grow- 
ing to Z 2 volumes of the special shape described above. 

4. P O L Y M E R  E X P A N S I O N  OF THE L O G A R I T H M  OF THE 
PARTIT ION F U N C T I O N  

T h e o r e m .  Suppose that U(a(P)) is a poential defined on rectangles 
of size n(P) x Ln(P) and satisfying (11). Then there exists an absolute con- 
stant fl0 such that for fl ~< flo and any finite volume V of the type described 
in Section 3 and arbitrary boundary condition a ' (~) ,  the logarithm of the 
partition function S(V[ a'(l?)) admits an absolutely convergent polymer 
expansion of the form (A.4) in the appendix. As a consequence the model 
defined by potential U(a(P)) possesses, for fl<~flo, a unique Gibbs state 
with the exponential decay of correlations. 

To prove this theorem we first define contours and corresponding 
polymers and then verify the condition of general Theorem A.l (see 
appendix). 

Evidently in (3) the numerator and the denominator can be multiplied 
by any nonnegative normalizing factor without changing the value of 
Pv.,,(g(V)). To choose this factor in a proper way we partition the finite 
volume V into vertical segments V n and denote the distance between a(V,,) 
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and b(V.) by II v.II : I V.I + 1. The number of configurations in V with 
boundary condition a'( 1 ~) can be calculated as 

N( V l a'(OEV)) = 1-[ N( V,, I a'a, ~.~, a2~ v.~) (12) 
tl 

where N ( V .  la'~v.),a'o(v.)) is the matrix element of M "v"" indexed by 
a'o, v.). a~l v.r By the Perron-Frobenius theorem both M and the adjoint 
matrix M* have a unique maximal eigenvalue 2 > 1 and the corresponding 
eigenvectors e and e* with positive components e~ and e*. We normalize 
e and e* in such a way that ~ .  e .e*  = 1. Using the Jordan normal form 
for the matrix M, one can show that 

N( V. I a'al,.o~, a'~lv.i) 
=e . ,  e*: ~."".,r l  +F(V, ,  l a'cv.), a~iv.)) ] (13) 

alVn] b{ I'n) 

where for some 0 < p ( M )  < 1 and v(M) > 0 

IF( V,, I a'~ v.). a~,l vo~)l ~< v(M) p(M)" v., (14) 

Now we define 

L(V) = 2 - ~  ,v.ll 

), E(a(OEV)) = e~o,,., e,.*,., 

E*(a(OeV) ) = e,~*,,, , e,,b,,;,, 

(15) 

Similarly, we define g(or(01V)) and E*(a(OIV)) by using the top and 
bottom elements of V. instead of a(V,,) and b(1I,,). We equivalently redefine 
a finite-volume Gibbs distribution as 

L(V)  E(O"(oE V)) 
v,.,,(a(v)) - 

-~(Vl a'(~)) 
e x p [ - f l H ( a ( V )  lcr'(19"))] (16) 

where 

3(VIa'({2))=L(V)E(a'(OEv)) ~. exp[--flH(a(V)la'(f>))] (17) 
o'{ V) 

and 

H(a(V) la'(19))= - ~. U(cr(Pn V)+a' (Pn  f")) 
P r ~ V ~ O  

(18) 

822/82/3-4-13 
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Our nearest aim is to obtain for Z( V l a'(17')) a contour representation 
of type (A.1) in the appendix. Consider a finite family of rectangles 
F =  {Pi} such that i f=  UiPi is a connected subset of Z 2. The following 
algorithm produces a minimal covering 7(F) of/~: 

(i) Fix the leftmost lower point in /~ and from all rectangles of F 
which begin at this point include in y(F) the rectangle P,., with the maximal 
linear size n(Pi~). 

(ii) Suppose that the rectangles Pit ..... P,'k are already selected to 7(F) 
during the previous steps of the algorithm and fix the leftmost lower point 
x ~/~\(U~= i P;) - Consider all rectangles of F covering x. Among them 
choose the rectangles with the maximal right upper corner (here maximal 
means rightmost upper). From the latter family of restangles include in y(F) 
the rectangle Pi~+, which has the maximal linear size. 

(iii) Repeat step (ii) until ff is totally covered, i.e., F =  Uj PO- 

Clearly the algorithm results in a unique family 7(F)= {Pij} which is 
called the precontour of F and has the property that for every P ~ ? ( F )  
there exists a point x covered by P~j but not belonging to other rectangles 
of y(F). 

Now we define a precontour 7= {Pj} (not related to any F) as a 
family of rectangles such that f =  Uj Pj is a connected subset of Z 2 and 
every Pj contains a point which does not belong to any other rectangle 
of y. 

We say that a rectangle P is compatible with precontour ), = { Pj} and 
denote it P < 7  if for F =  {Pj} u P  one has 7 (F)=  7. Obviously any PM?, 
belongs to ~ and any P embedded into some Pj ~ y is compatible with ?. It 
is also clear that some of the rectangles P ~_ )7 can be incompatible with 7. 

For any rectangle P and any configuration a(P) introduce 

U(fl, a( P) ) = exp[ flU( a( P) ) ] -- 1 (19) 

Obviously 

0 <~ U(fl, a(P)) <~2fle -'(e) (20) 

for fl small enough and one has 

~( V I a'(~')) = L(V) E(a'(OEV)) 

x ~ I-[ ( l+U( f l ,  a ( P n V ) + a ' ( P n P ) ) )  (21) 
a(VJ P : P c ~ V ~ O  
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Opening all brackets in the product, one gets 

3( v l ~' ( re)5 = L ( v )  E( a' ( O~ V) ) 

• H H 
a(V) {Pi}: P i ~  V @ O  P: P c  {Pi} 

U(fl, a(P n V ) + a ' ( P n  17)) 

(22) 

Regrouping terms in (225, we obtain 

S( V[ a'(17")) =L(V)  E(O"(0E V) ) 

x ~, ~, I-[ ( I - [  U(fl, cr(Pn V ) + a ' ( P n  175) 
a(V) {),i}extn V ~ O  i "  \Pc ) , i  

x l-] (1 + U(/L ~r(Pn v ) + a ' ( P ~  r I (23) 
P "< Yi / 

where the second sum is taken over all collections of precontours {yi}ext 
having: 

(i) dist(r )7; 2) > 1 for any y;,, 7~2 ~ {7i} e.~t 

(ii) P n  V ~  for any P~),i and any ),~{7~} ext. 

Such collections are called collections of mutually external precontours 
[condition (i5] having nonempty intersection with volume V [condition 
(ii)]. An empty collection is also counted in the partition function (23) 
with all products being identically 1. 

Given a precontour 7 with ~c~ V ~  and fixed configuration 
a(O1~ n V), we define a precontour partition function 

.~(y. , r~n  V) I or'(f>)) 

= L((~\OI:) n V) E*(a(01~n V))-l  E(a,(Oevn 9)) 

• Y, I-I u (~ ,a (ec~v )+c(Pn~>5)  
o'((~\~l~)c ", V) P ~ ,  

x I-[ (1 + U(fl, cr(Pn V ) + & ( P n  1~'))) (24) 
P~.~, 

For the finite volume V with fixed configuration a'(0Ev) on its external 
boundary we set 

Z( V l &(0EV)) = L(V) E( 6r' ( OE V) ) N( V l a' ( oE v) ) (25) 
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Then the partition function (23) becomes 

3(Vl ~'(~)) 

{~'i}extn V~O a((UiO'~i)~ V) 

-}- ~ r V ) )  ~Ii ~(y i ,  f (Oly ,  c~ V) ~'(P)) (26) 

On the other hand, one can define 

s*(Vl a'(oEv)) 

=L(V)E(a'(OEV)) ~ I-[ (l+U(fl, a(P))) 
a(V) P: P ~_ V 

= L(V) E(a'(OEV)) 

• Z Z rI ( I~ riP, a(,~)l 1-I (1 + riP, aIel)l) (27) 
a(V) { y i } e x ~ v  i \P~.) ' i  P"<Yi / 

where { Yi} ,~t =_ V means that P _  V for every P s y~ and every y~ s { y;} "~'. 
For the precontours y contributing to ZI~.,}~ its partition function, i.e., 
expression (24), can be simplified to 

~(~) ,  O ' (OI~) )  = E,(a(OI~)) 

x ~. I-[ U(fl, a(P)) I-I (l+U(fl, a(P)) (28) 
a(),-kol~ v) P E y P < y 

as there is no dependence on a'(I~). So an analog of expression (26) reads 

3*( V[ a'(oEv)) 

= Z 
{zi}ex'_~ v a(U~@?P 

• [-[ ~(~,,, G(0%)) 
i 

• 1--[ w(y,, a(0%)) s*(~,\0% I ~(0'~,)) 
i 

(29) 
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where the statistical weight of the precontour not intersecting 19" is defined 
by 

3(?, a(O~)) (30) 
w(~, a(a~)) -_~,(~\a,~ I ,~(a~)) 

Iterating above expression (30), one obtains 

s*( v I ~'(0E V)) 

= z z 
{)'i} ~ V a{uiol~i) 

x [ I  W(?;, ~(0~7,)) (31) 
i 

where the external sum is now taken over all compatible collections of 
precontours belonging to volume V. A collection { y~} is called a compatible 
collection of precontours if for any two yi,, ?~,~ {yi} either dis t (~,  ~g,_)> 1 
or Yi~ ~ Yi.,\0x)Y~, �9 Similarly, 

z( V l o'(P)) 

where 

(32) 

W(~,, ~ ( 0 ~ n  V) I ~'(/~)) 

S(~,, ~(0~c~ V) I ~ '(~))  
--,.~*((~('3 V)\0I~ [ o(~I~(3 V)--~- o"(~EV("~ ~)) (33) 

is a general expression for the statistical weight of precontour which 
coincides with (30) for the precontours nonintersecting P. 

Represent pictorially the precontour y as 0 ~  drawn in the form of 
closed broken line (geometrical contour). Then the external sum in (32) 
extends over all collections of nonintersecting geometrical contours 
possibly with one geometrical contour embedded into the interior of 
another geometrical contour. Provided the configuration cr is fixed in the 
union of all geometrical contours, the factor Z( .[ . )  in (32) counts 
the normalized number of configurations in the complement (to V) of the 
union of all geometrical contours. As the precontour y is not only the 
boundary 0~y, but the entire family of rectangles, the picture above is useful 
but incomplete. 
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Now we derive a convenient representation for Z(-I" )- Let { 7",,} be a 
partition of v \ (U;0 l f j )  into vertical segments. In view of (12), (13), 
and (15) 

N( T,, I a'(r,~, a'~(r,)) 
=l--[ e e* 2 IIr'll =I-I(l+F(T"la"~r'~'ab~r"~)) 

n O'a( Tn ) a'b t Tn ) n 

= E I-[ F(Tj[ a;~rjl, aZ�91 (34) 

where 

and the sum Z{~I is taken over all possible collections (including the 
empty collection) of vertical segments from the partition of v\(U,. 012i). If 
one substitutes the right-hand side of (34) in (32), then the resulting 
expression can be written in terms of contours which are defined below. 

A contour is a triple/2 = ({ r,}, {r j}, a) such that: 

(a) {7i} n V:~ ~ is a compatible collection of precontours. 

(b) { rj} _ v \ ( u i  3~2 ;) is a collection of mutually disjoint finite verti- 
cal segments with a(rfl, b(rj)~ Uj ( c317~ r~ v ) w  OE V. 

(C) a is configuration in U, (017~ r~ V). 

(d) Either {7~} is nonempty and for every rj at least one of its ends 
[a(rj) or b(rfl] belongs to Ui(c31yic~ V) or {7i} is empty and 
{rj} consists of a single segment r with a(r), b(r)~c3EV. 

(e) For every pair 7g, and 7~,, there exists a sequence 

7r =7;, ,  z), ..... 7i~, zj,, )%+, =7i "  

such that for any 1 ~< k ~< s either a(rA) ~ Oil& and b(rjk) e al)7~.+, 
or b(%) ~ a~y~ and a(rjk) ~ a~2;~+,. 

The definition above is clearly V dependent. In the special case V= Z 2 we 
obtain so-called free contours. 

It is useful to represent pictorially a contour as a family of pairwise 
nonintersecting geometrical contours joined in the connected structure by 
means of some number of vertical segments. Some of the geometrical 
contours can be embedded into other geometrical contours and some of the 
segments can join the whole structure with c3Ev. 
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Given a contour 0=({7 ;} ,  {rj}, o-), we define 0 ~ =  Ujrj, D"= U;)7;, 
~ = 1 2 ~ u D  ~', (2=D~u(UiOI)Ti), and 

W(O I o"(P)) =I-[ W(),. o'(0~)7; n V) l ~'(P)) l-[ F(Tjl o-:(~jl. (~;(=j~) (35) 
i j 

where a " =  a(Ui (01)7/ 0 V))Jt-fft(OEv\(ui )7i))" This leads to the representa- 
tions 

and 

.E( V I (r'(P)) = y' 1--I W(12, I o-'(12)) (36) 
{nt}c~w~O I 

.T*( V I (r'(oEv)) = ~. I-I W(f2, I (r'(P)) (37) 
{~t} _~ V / 

The sums in (36) and (37) extend over compatible collections of  contours 
having nonempty intersection with V and belonging to V, respectively. A 
contour s belongs to the volume V if the corresponding precontours y; ~ V 
and ~ ~ V. A contour s has nonempty intersection with volume V if 
{7;} c~ V:/: ~ and D~_ V. A collection {D,} is compatible if for any ~,, and 
I2t_, one has ~h n ~ t , . = ~  and the total collection {y;(O/~), y~(g2t_,)} is a 
compatible collection of precontours. For free contours we use the notation 
W(f2 t) instead of W(f2 t I a'(P)), as in this case the right-hand side of (35) 
does not depend on V= Z 2. 

By construction (the shape of P and V) Ilrjll =n(rj)L with n(rj) being 
a positive integer. Choosing L large enough, one can make 6 = v(M) p(M) L 
arbitrarily small and we treat 6 as the second small parameter of our 
calculations (the first one is fl). 

L a m m a 2 .  The statistical weight of contour I '2=({y;},{Tj},a) 
satisfies 

I"Ij 6n(r)) I-Ii I~P E yi 2fl e-'"vl + a'e"U'~ 
I W(f2t I a'( l~))l ~< E(c((U; 0i)7;) n V)) E*(~r((U; 01)7;) n V)) (38) 

Proof. CJearly [[j v(M) p(M) ll~j" <~I]j6 (''(~j~ is the upper bound for 
the absolute value of the product 1-'Ij in (35). To calculate another product 
[-L in (35) we use expression (33) for every factor in this product. Given 
L the ratio in the right-hand side of (33) can be estimated as follows. In 
view of the definition (24) of a precontour partition function and the 
exponential decay condition (11) on the potential, the numerator of this 
ratio does not exceed 
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L ( ( f i \ O l ~ i )  n V )  E*(a(OI~,c~ V))-' E ( 6 r ' ( O E V n  ~i)) 

x([J~,(2fle-"'e)') 
x ~ 1-[ (l+U(fl ,  c r (PnV)+a ' (Pn f ' ) ) )  (39) 

Ol{~i\ol'/i)t'~ V) P'<)'i 

while in view of the first equality in expression (27) the denominator is 
equal to 

L((fi\OIfi) c~ V) E(o-(Ol)T, n V) -k-o"(OEVn ~7i)) 

x Z l-[ (1 + U(fl, o'(P))) (40) 
O'({}71\01~7i) m V) P ~ (fi\olfi) m V 

Together with the estimate 

I-I (l + U(fl, ~r(P n V) +a'(P :a lT))) 
P < )'i 

P m o E v ~ o  

P'< Yi 
P m a E v ~ o  

<.ex,[ 1 
x~Or:Vm']i P~X 

~< exp(fl m I oE Vc~ g/I) 

~< 1-[ exp[p~/:n(?)] 
P~Yi 

it gives the lemma. I 

Lemma 2 allows us to verify the general condition 
Theorem A.I for contours f2 = ({ Yi}, { rj}, or). 

Lemma 3. For fl and 5 small enough and 

one has 

a ( O ) = ~ Z  E n(P)+En(rj)  
i PEyi j 

I W(S2' I a'(l~))l e2"~a')<~a(g2) 
g2' -/-f2 

uniformly in V and or'(~'). 

(41) 

(A.3) of 

(42) 

(43) 
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Proof. Consider a sublattice o f Z  2 formed by the points .'~=(x~, Lx2) 
which we call basic points (xl and x2 are integers). Observe that if con- 
tours O and s'2' are incompatible, then there exist basic points .~ ~ sO and 
.s which either coincide or are nearest neighbors in the sublattice of 

basic points [dist(.~, s 1]. The number of basic points in SO does not 
exceed 4 ~ i  ~.e~., n(P~) + 5~ i n(rj). Hence 

I W(12' I a'(17')) I e 2"~Q'' 
g~' -r- K2 

~< ~ ~ I W(I2' I a'(IY)) I e 2"`a') 

dis t ( .9 , .~ ' )  ~< 1 

~<(20~ ~ ,l{Pi)~-5E,l(rj))x E 
�9 P ~ ; ' i  j . q ' : .O '  ~ 0 

I W ( ~ ' [ ~ ' ( l ~ ) ) l  e -~"ca'~ (44) 

Thus, the problem is reduced to the estimation of 

I W(s"2 I a'( P})I e2"'a' 

We will actually estimate the even larger expression 

I W(I2 ] a'(19)) I e 2''n' (45) 

The difference is that we used ~ instead of SO and we will use the upper 
bound of (45) in the next section. 

Denote by co = ({ Yi}, { ri} ) the collection of precontours and vertical 
segments which can be completed to some con tour /2=  ({y;}, {r/}, a) and 
set 

W(,o) = [-[ 6 ''~,'/z 1-[ 1-I 2fl e-''(ev3 
j i P E ) ' i  

(46) 

The notations co(O), c5, ~5, a(co), etc., are self-explanatory. For 6 and fl 
small enough the sum (45) does not exceed 

(47) 
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Since L t> no the internal sum in (47) is equal to 

= I-I E e < e *  = 1 (48) 
x e ( U i a l ~ i } r ~  V cr x 

To estimate the first sum in (47) we provide every co such that o330 
with the following treelike structure. Fix rj ~ 0 or Yi with ~i ~ 0 as the root  
(vertex of the zeroth level) of  the tree. If  it is the segment r~, then there 
exists one or two precontours connected with rj and we choose them as the 
vertices of  the first level of  the tree. If  the root  is the precontour  y~, then 
all segments connected with 0~7,. are chosen to be the vertices of  the first 
level of  the tree. This procedure can be repeated for every vertex of  the first 
level, which gives vertices of  the second level and so on until all precon- 
tours and segments of  co are selected as the vertices of  the tree. 

First we consider co: 05 ~ 0 with the corresponding tree being a zero- 
level tree (i.e., it contains the root  only). If  co consists of  a single segment 
r and 6 ~< 1/64, then 

W(co)<.. ~" r (49) 
m:ch ~ 0 n( r )=  ] 

The case when co consists of  a single precontour  y is more complicated. 
Let 

W(y) = 1--[ 2fl e-'(ev6 (50) 
P ~ 7i 

and lY[ denotes the number  of  rectangles in the precontour y. By induction 
in I~'1 we prove that 

Y~ w(y)<~p '/3 (51) 
~,: ~v~ 0 

For  I~1-- 1, i.e., for y = {P} 

Z 2fle-"~ ~ n2e-"/6~fl '/3 (52) 
7 = { P } : P ~ O  n = l  

i ff l  is small enough. Suppose that for y =  {Pj} with I~l < m  it was already 
proven that 

E I-I 2fle-'"e')/6<~fl '/3 (53) 
?:[y l<m,  P e y  

~ 0  
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and consider all y= {Pj} with 17l ~<m. Then 

Z 1--[ 2fl e-'(ev6 
y: 171 ~<m, P e ) ,  

~BO 

<<. Z 2fie - 'ev6 )-~, , ( 1 +  
P~O x~O P~t3 p X 

Z 2P e-'''''/~ I-I (1 +~,.) 
P~O x~oEpuoIP 

<~ ~ 2fie -'~ev6+sp'a'~e) 
P~O 

~, 2fie -(1/'2h'0'1 
P~O 

=2fl ~ n2e-ll/121" <~fl 1/3 
n =  1 

I-[ 2fl e-''(e'l/6) 
7': 17'1 < m ,  P '  E ),' 

(54) 

w(co) 

<~ ~ 0"(~)/2 I~ ( 1 +  y" W(co')) 
t : ' c ~  0 x~a(T)ub(r) to':tZr 

( ) + 2 I-[2fl e-'(p)/3 l-I 1+ 2 W(co') 
y : ~ B 0  P E ) ,  x : d i s t { x ,  P} = 1 w':~'Bx, 
�9 I~o'l < m 

~< Z 6"'~'/2eta'~+"/""(~'+ Z 1-[ 2fl e-'tev3e"~''+p'/''4"'P' 
r : r ~ 0  y : ~ 0  P ~ y  

<- E ~176 E 
n ( r )  = 1 ) , : ~  0 

0 1 / 2  . ~  ill~3 (57) 

Then 

2 
oJ: tb 3 0, 
Io~1 ~< m 

where the last two inequalities hold for fl small enough. 
Now by induction in numver of levels in the tree corresponding to co 

with o3 ~ 0 we prove that 

E W ( ( ~  ( 5 5 )  
r o5 ~ 0 

Bounds (49) and (51) verify the first step of the induction. Denote by Icol 
the number of levels in co and suppose that 

Z W(co)<<-P ~/3+01/3 (56) 
oJ:o5 ~ 0 
la, q < ,. 
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This finishes the induction and 
for (45). Substituting this bound 
lemma. II 

provides the upper bound 6~/3+fl 1Is 
on the right-hand side of (44) gives 

Proof of Theorem. Applying Theorem A.1 to the representation 
(36), we obtain an absolutely convergent polymer expansion for 
log~(VI a'(19)). II 

5. UN IQUENESS OF GIBBS STATES A N D  EXPONENTIAL 
DECAY OF CORRELATIONS 

Lemma 4. The limit Gibbs distribution for the Hamiltonian (18) 
does not depend on boundary conditions. 

Proof. First we recall that for a given sequence of configurations 
am(Z-) the corresponding limit Gibbs distribution is the measure on s  
with the marginal distributions 

p/..;,,l(a(A))= lim ~, ltv.,..;,,(a(A)+~(V,,,\A)) 
m ~  oo ,~r V n , \ A )  

(58) 

where A c Z 2 is finite, a(A) is a configuration in A (local observable), and 
V,,, is a sequence of volumes growing to Z 2 in the van Hove sense. By the 
consistency of the Gibbs distribution we may assume that A is a rectangle 
of size I(A) x LI(A). 

It is not hard to see now that for V= V,,, and a ' =  a',, the sum on the 
right-hand side of (58) is equal to 

L,A  E 1 E,(a(O,A))exp fl ~ U(a(P)) ~(V\AIa'(19)+G(A)) 

---exp[fl ~ U(a(P))+ ~ W0zlg(A)+a'(19)) 

- ~ W(n I #( 19))] (59) 
n : n c ~  V~ 0 

where for tt = [g2~'] we denote i f=  Ui ~i.  
Note that W(nla(A)+a'(19))=W(n[a'(19)) if d is t ( r~,A)>l ,  

W(nla(A)+a'(19)) = W(rcla(A)) if dist(~, 17")> 1, and W(n [ a ' (19))= 
W(n) if dist(r~, l 9) > 1. Thus we have 
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W(rc I or(A) + a'( ~))--  
n: n ~ V \ A  # f,~ n: rc ~ V # f2J 

= ~ W(~ I a ( a ) ) -  Y'. 
n : d i s t ( f f ,  A )  <~ 1 rc dis t ( f f ,  A )  ~ 1 

d i s t ( z L ~ )  = 0 

+ ~ W(n I a(A) + a'(l~'))-- 
n : d i s t ( f f ,  A ) ~ <  l 

d i s t ( a ,  193 = 1 

- y. W(rc I ~r(A))+ 

w(n  I a'(I~)) 

w ( . )  

E w(~ 
u: dis t ( f f ,  A) ~< 1 

d i s t (N,  17") = 1 

w(~) 

a'(r 

n: dis t ( f f ,  A )  ~< I n : d i s t ( N ,  A )  ~< 1 
d i s t ( ~ ,  I ~  = I d is t ( f f ,  19) = 1 

When V ~  Z z each of the last four sums in the above expression ts less than 

5 IAI exp[ - ~dist(A, 1~)] (60) 

uniformly in #(17'). In fact, according to Lemma 3, 

w(I2) = W(g2) e "ta) (61) 

satisfies condition (A.3) of Theorem A.1. So for the corresponding w(12) 
statistical weights of polymers w(n) one has the estimate (A.6). Now 

E I w(,~)l~< E E E I w(,~)l 
re: d i s t ( ~ ,  A )  ~< 1 x:  d i s t ( x . A )  ~< I f2: ~ ~ .x" 7t: ~ ~ f2. 

d i s t ( rL  17") = I d i s t ( ~ .  # )  = t 

~<exp[ -~d i s t (A,  19")] ~ ~. ~ w(n) 
x : d i s t ( x , A ) < ~ l  ~ Q : - Q ~ x  t t : n ~ f 2  

~<exp[ -~d i s t (A,  I~)] Y" Y' w(g2) e "(a) 
x :  d i s t (  x ,  A ) <~ 1 .Q: .Q ~ x 

~< exp[ - ~dist(A, I~)] ~ (fl,/3 + 6~/3) 
x:  d i s t ( x , A  ) <~ I 

~< 5 [A[ exp[ - ~dist(A, 17)] (62) 

where we used (A.6). The estimation of the remaining sums over W(nl,  ) 
can be performed in the same way. This gives 

u I,;,,l(a(A)) 

L(A) 
E*(a(OIA)) 

xexp [fl 
P ~ - - A  

u(a(p)) + Z w(,~ I a(.4)) - Z w(~)] 
r~ :d i s t (~ .  A )  ~< I 7 t : d i s t ( f f . A )  ~< I 

d i s t ( f f . A  ) = 0 

(63) 
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where the second sum is taken over polymers of Z-'\A and the third sum 
is taken over free polymers of Z 2. This measure is obviously independent 
of the boundary conditions {a',,}. I 

Lemma 5. Let/~(.) denotes the unique Gibbs state from Lemma 4. 
Then for any finite A, B c Z 2 with 

min(lAI, IBI)exp[ -(1/12)dist(A,  B)] ~< 1/4 

and any configurations a(A) and a(B) 

I#(a(A) + a(B)) - #(a(A)) #(a(B))l 

<~ l Olt( a( A ) ) l.t( a( B ) ) min(IAI, IBI) e -( l/12)dist(A'B) (64) 

Proof.  We may again assume that both A and B are appropriate rec- 
tangles. The proof is similar to the proof of the previous lemma and it can 
be derived from the following representation of the difference on the left- 
hand side of (64): 

/ t (o (A) )  i t (a(B)){exp [ ~ W(n I cr(A)+ a(B)) 
n d J s t ( n  A~B)--<I 

i 
d is t ( f f ,  A ~ B ) = 0  

- X w ( ~ ) -  X w(~ I ,r(A)) + X W(~) 
rr: d i s t ( ~ ,  A ~ B )  ~< 1 n: d is t (  r~ ,A ) ~< 1 n: d i s t ( t L  A ) ~< 1 

d i s t (  ~, A ) = 0 

n: d is t (~ ,  B )  = I n: d is t ( r~,B)  ~< I 
dist(  rL ~') = 0  

=/. t (o(A))  ,u(o'(B)) {exp [ -  ~ W(rt l tr(A) + G ( B ) )  
rt: d is t (  r~, A ) ~< I 

d i s t ( rL  B ~< 1 

+ z (6,) 
rt: d i s t ( ~ ,  A ) ~< 1 

d i s t i a ,  B )  ~< I 

which gives (64) for min(lA[, IB[)exp[ - ~dist(A, B)] ,~ 1. I 

6. G E N E R A L I Z A T I O N S  

From the point of view of one-dimensional statistical mechanics a 
subshift of finite type is a one-dimensional model given by the nearest 
neighbor potential taking values 0 and - ~ .  The corresponding transfer 
matrix M has only 0 and 1 entries and the number of configurations 



2D Spin Lattice Systems 817 

N( V. I a~ v,,. a~r is nothing but the partition function in the volume V, 
t ! with the boundary conditions ~r~v, ) and ab~ v.). 

Clearly the representation (13) for the partition function and the 
estimate (14) are still true for any one-dimensional model on the configura- 
tion space S z with nonnegative transfer-matrix having positive power. This 
extends our results to the case when on the RHS of (2) one has an 
additional term 

- ~ U(a(In V) + a'(Ira tY)) (66) 
l ~  Vv~ O ,  II]=-'~ 

where I denotes a vertical segment and U(a( / ) )~ R w {o o}. 
The extension to the case of arbitrary finite-range vertical potential is 

also standard. Suppose that instead of (66) we have 

- ~, U(~r(I~ V) + ~'(Ic~ 1~')) (67) 
1 ~  V ~ ,  [ll<~m 

where m > 2. Partition the lattice Z 2 into vertical segments of length 2m 
such that the beginning of every segment (i.e., its lower site) belongs to the 
sublattice 2~ 2 = Z x 2mZ. Now we pass from the spin space S and lattice Z 2 
to the spin space S= S 2" and lattice Z'-. Namely, for vertical segments 
i = i ,  wi2 of Z'- with IiI =2 ,  Ii~l = I, ]121 = 1 (1 .] in units of Z-') we set 

u(o(/)) = ~ Z u(a(/)) + ~ v(a(/)) 
/=-~,  I~--i2 lr~In 4 = ~ i , / n i , =  0 

and for squares Q of Z'- (which are rectangles of Z 2) we set 

(68) 

O(#(Q)) = ~ U(a(Q)) (69) 
Q: b(Q) ~ b(Q) 

where by ~ we refer to the natural relation between initial and "bared" 
objects that was discribed in Section 3. By definition, O(~(l)) is not 0 only 
for I il -- 2 and clearly U(#(Q)) ~< 2m exp[ - n(Q) ], which reduces this case 
to the previous one by absorbing 2m in ft. 

The situation is slightly more involved for the cse of infinite-range 
exponentially decaying vertical potential. In that case an additional vertical 
term is 

-- ~ U(a( Ir~ V)+a' ( Ic~  I?)) (70) 
l ra V # lZJ 

with no restrictions on III and [U(a(I))l <~ C exp(-0 t  [I]), where C > 0 and 
> 0. Now we cut the infinite-range potential at some range m, the value 
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of which will be chosen later, and transform the resulting finite-range 
potential into a nearest neighbor one as in the previous paragraph. It is a 
well-known fact that the resulting v and p in (13) can be chosen inde- 
pendent of m (for a short proof see, e.g., Appendix in ref. 1). During the 
transformation of the model we also arrange the tail of the infinite-range 
vertical potential into a square potential O'(g(Q)) in the following way: 

O'(g(Q)) = y'  U(s(I)) (71) 
I:Ir  r Q" 

vO'=O 

Clearly 

I O'(g(O))l <~men(O_.) exp[ - ( m -  1) ouT(O) ] (72) 

It is not hard to see that the results of previous sections remains true 
i f ( I )  is replaced by 

I U(a(Q))l ~<exp[ -ctl(Q)], 0 < c t <  1 (73) 

The affected estimates are (6), (20), (41), (52), and (54) and the corre- 
sponding modifications are straightforward. Given v, p, and 0t, we take now 
L and then flo such that for fl<~flo and (73) instead of (1) the Main Result 
is true. Choosing m so large and then fl so small that 

inCh(Q) exp[ - ( m -  1) ~.n(O)] ~<-~ exp[ - an (Q) ] ,  2mfl <<, 

we obtain 

[flO(g(Q)) + O'(g(Q))[ ~<flo exp[ -0m(Q)] 

which extends the Main Result to the case of the infinite-range vertical 
potential. 

A P P E N D I X .  P O L Y M E R  E X P A N S I O N  T H E O R E M  

Consider a finite or countable set O the elements of which are called 
(abstract) contours and denoted 0, 0', etc. Fix some reflexive and symmetric 
relation on O x O. A pair 0, 0' e O x O is called incompatible (0 ,~ 0') if it 
belongs to a given relation and this pair is called compatible (0 ~ 0') in the 
opposite case. A collection { 0i} is called a compatible collection of  contours 
if any two of its elements are compatible. Every contour 0 is assigned a 
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(generally speaking) complex-valued statistical weight denoted by w(0), 
and for any finite A ~_ O an (abstract) partition function is defined as 

Z(A) = ~. I~ w(Oj) (A.1) 
{Oj} ~,,,'l j 

where the sum is extended to all compatible collections of contours 0~ E A. 
The empty collection is compatible by definition, and it is included in Z(A) 
with statistical weight 1. 

A polymer n = [0~/] is an (unordered) finite collection of different con- 
tours 0~ e O taken with positive integer multiplicities at, such that for every 
pair 0', 0" e n there exists a sequence 0' = 0~, 0i2 . . . . .  0is = 0" ert  with 
0gj ,~ 0;,+,, j =  1, 2 ..... s - -1 .  The notation n ___A means that O~eA for every 
O~en. 

With every polymer ~ we associate an (abstract) graph F(~) which 
consists of ~-'~i O[i vertices labeled by the contours from ~ and edges joining 
every two vertices labeled by incompatible contours. It follows from the 
definition of F(n) that it is connected and we denote by r(~) the quantity 

r ( ~ ) = l - [ ( a ~ ! ) - '  ~ ( - 1 )  Ir'l (A.2) 
i F ' c : F ( ~ )  

where the sum is taken over all connected subgraphs F '  of F(~) containing 
all of ~ ~,. vertices and IF'I denotes the number of edges in F'. For any 
0 e ~  we denote by ~(0, ~) the multiplicity of 0 in the polymer n. 

The following polymer expansion theorem is a modification of results 
of refs. 16 and 12 proven in ref. 14 (see also ref. 5 for close results). 

T h e o r e m  A.1. Suppose that there exists a function a(0): O ~ R  + 

such that for any contour 0 

Iw(0')l e"(~ (A.3) 
O':O' -/- O 

Then, for any finite A, 

log Z(A) = ~ w(n) (A.4) 
n~--A 

where the statistical weight of a polymer n = [07' ] is equal to 

w(r) = r(rt) I-I w(Oi) ~' (A.5) 
i 

822/82/3-4-|4 
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Moreover, the series (A.4) for log Z(A) is absolutely convergent in view of 
the estimate 

0~(0, n) Iw(n)l ~ lw(0)l e "l~ (A.6) 
n : n ~ O  

which holds true for any contour 0. 

Corollary A.2. For any polymer n = [0~'] 

[r(n)] ~< min(a(0i, n) -I Iw(0,)l e "~~ ~ Iw(031-=' 
Oi~ n i 

(A.7) 

Proof. Denote by O* the contour from n such that 

~(0", n) - t  Iw(0*)l e "(~ = min(~(0i, n) -1 Iw(031 e "(~ (A.8) 
OiE n 

According to (A.6), 

0e(0*, n)lw(n)l ~ Z 0c(0*, n') Iw(n')l ~ Iw(0*)l e "l~ (A.9) 
i t ' :  7t' ~ O* 

and (A.7) follows now from definition (A.5). II 

Coro l la ry  A.3. For any function b(O): O~--,R + consider modified 
statistical weights of contours ~(0) such that 

I~W'(0)l = Iw(0)l e -be~ (A.IO) 

Then for the corresponding statistical weights of polymers ~(n) one has the 
bound 

Iff'(n)l <~ min(~ Oi' n)- ' lw( OAl ea'~ exp I - ~ ~ OA (A.11) 

Proof. Substituting (A.7) into the definition of k(n), one immediately 
gets (A.I1). n 

Suppose that, given a compatibility relation for contours, one can find 
the maximal statistical weight w(O) satisfying (A.3) with some a(O). Then 
Corollary A.3 says that for the statistical weights ~(0) of contours that are 
smaller in absolute value, the corresponding statistical weights of polymers 
decay exponentially. 
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